Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

L. Vijayalakshmi, ${ }^{\text {a }}$ V. Parthasarathi, ${ }^{\text {a* }}$ Bharat Varu ${ }^{\text {b }}$ and Anamik Shah ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Physics, Bharathidasan
University, Tiruchirappalli 620 024, India, and
${ }^{\mathbf{b}}$ Department of Chemistry, Saurashtra
University, Rajkot 360 005, India
Correspondence e-mail: sarati@bdu.ernet.in

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.030$
$w R$ factor $=0.086$
Data-to-parameter ratio $=8.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

3-Cyano-4-[2-(4-methylthiophenyl)ethenyl]-2H-1-benzopyran-2-one

In the title compound, 4-[2-(4-methylthiophenyl)ethenyl]-2-oxo-2H-1-benzopyran-3-carbonitrile, $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~S}$, the benzopyran and phenyl rings are individually planar, but the phenyl ring is twisted $56.7(1)^{\circ}$ out of the benzopyran ring plane. The configuration about the ethenyl double bond is E.

Comment

The structure determination of the title compound, (I), was taken up as part of our studies on coumarin derivatives which possess a variety of medicinal and biological properties (Parrish et al., 1974; Evans et al., 1981; Fujiwara et al., 1978; Song \& Gordon, 1970; Kawase et al., 2001). It is of physiological interest that there is an apparent close chemical similarity between coumarin and vitamin K (Kralt \& Claassen, 1972).

(I)

The molecular geometry of (I) is similar to that of 3-cyano-6-methyl-4-[2-(4-methoxyphenyl)ethenyl]-2H-1-benzopyran-2-one (Vijayalakshmi et al., 2001). The bond lengths and angles in the coumarin moiety agree well with the reported values (Jha et al., 2000; Chinnakali et al., 1998, 1999; Vijayalakshmi et al., 2000, 2001). The dihedral angle between the phenyl and planar benzopyran rings is $56.7(1)^{\circ}$. The widening of the bond angle $\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 18$ to $126.8(2)^{\circ}$ is due to the close approach of the H11 and H17 atoms ($2.256 \AA$). A similar feature is observed in the structures of cinnamanilides (Renganayaki et al., 1999, 2000; Subramanian et al., 1999) and dienethioamide (Nesterov et al., 2000). Also, the slight increase in $\mathrm{C} 4-\mathrm{C} 11-\mathrm{C} 12$ to $122.2(2)^{\circ}$ is due to steric repulsion between H12 and C21 (H12 . C21 $2.629 \AA$). The $\mathrm{Csp}{ }^{2}-\mathrm{S}[1.755(2) \AA]$ and $\mathrm{Csp}{ }^{3}-\mathrm{S}[1.777(4) \AA]$ distances show partial double-bond character (Malhotra et al., 1997; Azim et al., 1997; Kumar et al., 1999; Allen et al., 1987). A $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ intermolecular short contact is observed

Received 27 February 2001
Accepted 4 April 2001
Online 26 April 2001

Figure 1
The molecular structure of (I) showing 50% probability displacement ellipsoids.
$\left[\mathrm{C} 16 \cdots \mathrm{~N} 21^{\mathrm{i}} 3.337(4) \AA\right.$ and $\mathrm{H} 16 \cdots \mathrm{~N} 21^{\mathrm{i}} 2.56 \AA$; symmetry code: (i) $x, y+1, z]$.

Experimental

A mixture of 3-cyano-4-methyl-2 H -1-benzopyran-2-one (0.01 mol) and 4 -methylthiobenzaldehyde (0.01 mol) was dissolved in chloroform (75 ml) and a few drops of piperidine ($8-10$ drops) was added as catalyst. The mixture was heated on a hotplate with stirring for $15-$ 16 h . After evaporation of the solvent, the solid residue was recrystallized from dimethylformamide to give yellow crystals (m.p. 482 K ; yield 64%).

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~S}$
$M_{r}=319.36$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=7.783(3) \AA \AA$
$b=7.8653(10) \AA$
$c=25.610(3) \AA$
$V=1567.7(7) \AA^{3}$
$Z=4$
$D_{x}=1.353 \mathrm{Mg} \mathrm{m}^{-3}$
$\begin{aligned} & \mathrm{Cu} K \alpha \text { radiation } \\ & \text { Cell parameters from } 25 \\ & \text { reflections }\end{aligned}$
$\theta=2-25^{\circ}$
$\mu=1.91 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Needle, yellow
$0.15 \times 0.10 \times 0.09 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.784, T_{\text {max }}=0.891$
1676 measured reflections
1676 independent reflections

Refinement

Refinement on F^{2}

$$
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0501 P)^{2}\right.
$$

$+0.3363 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.18 \mathrm{e}^{\mathrm{m}} \mathrm{A}^{-3}$
$\Delta \rho_{\text {min }}=-0.21 \mathrm{e} \mathrm{A}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0037 (4)

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$.

$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 11-\mathrm{C} 12$	$-45.5(3)$	$\mathrm{C} 16-\mathrm{C} 15-\mathrm{S} 19-\mathrm{C} 20$	$4.9(3)$
$\mathrm{C} 10-\mathrm{C} 4-\mathrm{C} 11-\mathrm{C} 12$	$135.5(2)$	$\mathrm{C} 14-\mathrm{C} 15-\mathrm{S} 19-\mathrm{C} 20$	$-175.5(2)$

All H atoms were fixed using geometrical considerations. The absolute configuration is indeterminate for the title compound.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: MolEN (Fair, 1990); data reduction: MolEN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997); software used to prepare material for publication: SHELXL97.

LV thanks the University Grants Commission, India, for the award of an FIP fellowship during the year 2000-2001. One of the authors (LV) thanks Dr Babu Vergheese, RSIC, Indian Institute of Technology, Chennai, for his assistance in data collection.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Azim, A., Parmar, V. S. \& Errington, W. (1997). Acta Cryst. C53, 1436-1438.
Chinnakali, K., Fun, H.-K., Sriraghavan, K. \& Ramakrishnan, V. T. (1998). Acta Cryst. C54, 367-368.
Chinnakali, K., Fun, H.-K., Sriraghavan, K. \& Ramakrishnan, V. T. (1999). Acta Cryst. C55, 946-948.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Evans, J. M., Showell, G. A. \& Fake, C. S. (1981). Chem. Abstr. 95, 115301.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Fujiwhara, M., Sasaki, T. \& Uchida, T. (1978). Chem. Abstr. 89, 14799.
Jha, A., Malhotra, S., Parmar, V. S. \& Errington, W. (2000). Acta Cryst. C56, 899-900.
Kralt, T. \& Claassen, V. (1972). Drug Design, Vol. III, edited by E. J. Ariens, pp. 189-203. New York: Academic Press.
Kawase, M., Varu, B., Shah, A., Motohashi, N., Tani, S., Saito, S., Devnath, S., Mahapatra., Dastidar, S. G. \& Chakrabarty, A. N. (2001). Arzneim. Forch. (Drug Res. II), 51, 67-71.
Kumar, R., Parmar, V. S. \& Errington, W. (1999). Acta Cryst. C55, 561-563.
Malhotra, S., Parmar, V. S. \& Errington, W. (1997). Acta Cryst. C53, 1442-1444.
Nesterov, V. N., Antipin, M. Yu., Timofeeva, T. V. \& Clark, R. D. (2000). Acta Cryst. C56, 88-89.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Parrish, J. A., Fitzpatrick, T. B., Tannenbaum, L. \& Pathak, M. A. (1974). New Engl. J. Med. 291, 206-209.
Renganayaki, S., Subramanian, E., Shanmuga Sundara Raj, S. \& Fun. H.-K. (1999). Acta Cryst. C55, 1672-1673.

Renganayaki, S., Subramanian, E., Shanmuga Sundara Raj, S.\& Fun. H.-K. (2000). Acta Cryst. C56, 349-350.

organic papers

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Song, P. S. \& Gordon, W. H. (1970). J. Phys. Chem. 74, 4234-4240.
Subramanian, E., Renganayaki, S., Shanmuga Sundara Raj, S. \& Fun, H.-K. (1999). Acta Cryst. C55, 764-766.

Vijayalakshmi, L., Parthasarathi, V., Varu, B., Dodia, N. \& Shah, A. (2000) Acta Cryst. C56, e401-402.
Vijayalakshmi, L., Parthasarathi, V., Varu, B. \& Shah, A. (2001). Acta Cryst. E57, o245-246.
Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.

